References:

  1. Seife, C. Blunting nature's Swiss army knife [news]. Science 1997, 277, 1602-3.


  2. See Chemical Reviews 2002, Volume 102, entire issue.


  3. Puente, X. S.; Sanchez, L. M.; Overall, C. M.; Lopez-Otin, C., Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003, 4, (7), 544-58.


  4. (a) Leung, D.; Abbenante, G.; Fairlie, D. P. Protease Inhibitors : Current Status and Future Prospects, J. Med. Chem.. 2000, 43, 305-341.

    (b) Babine, R. E.; Bender, S. L. Molecular recognition of protein-ligand complexes: Applications to drug design. Chem. Rev. 1997, 97, 1359-1472.

    (c) Ripka, A. S.; Rich, D. H. Peptidomimetic design. Curr. Opin. Chem. Biol. 1998, 2, 441-52.

    (d) Craik, M. S.; Debouck, C. Proteases as Therapeutic Targets. In Perspectives in Drug Discovery and Design; J. H. McKerrow and M. N. G. James, Eds.; ESCOM: Leiden, 1995, 2, 1-125.

    (e) Shaw, E. Cysteinyl proteinases and their selective inactivation. Adv. Enzymol. Relat. Areas Mol. Biol. 1990, 63, 271-347.


  5. The Network will be active in areas of research that can potentially contribute to various degrees to all four current National Priorities :
    National Research Priority 1: An Environmentally Sustainable Australia
    National Research Priority 2: Promoting and Maintaining Good Health
    National Research Priority 3: Frontier Technologies for building and transforming Australian Industries
    National Research Priority 4: Safeguarding Australia


  6. (a) Wlodawer, A.; Erickson, J. W. Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 1993, 62, 543-85.

    (b) Dunn, B. M.; Goodenow, M. M.; Gustchina, A.; Wlodawer, A. Retroviral proteases. Genome Biol 2002, 3, REVIEWS3006.


  7. (a) Walker, M. P.; Appleby, T. C.; Zhong, W.; Lau, J. Y.; Hong, Z. Hepatitis C virus therapies: current treatments, targets and future perspectives. Antivir Chem Chemother 2003, 14, 1-21.

    (b) Narjes, F.; Koch, U.; Steinkuhler, C. Recent developments in the discovery of hepatitis C virus serine protease inhibitors--towards a new class of antiviral agents? Expert Opin Investig Drugs 2003, 12, 153-163.


  8. Shieh, H. S., Kurumbail, R. G., Stevens, A. M., Stegeman, R. A., Sturman, E. J., Pak, J. Y., Wittwer, A. J., Palmier, M. O., Wiegand, R. C., Holwerda, B. C., Stallings, W. C.: Three-dimensional structure of human cytomegalovirus protease. Nature 1996, 383, 279.


  9. Matthews, D. A.; Smith, W. W.; Ferre, R. A.; Condon, B.; Budahazi, G.; Sisson, W.; Villafranca, J. E.; Janson, C. A.; McElroy, H. E.; Gribskov, C. L.; et al. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 1994, 77, 761-71.


  10. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L, Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M, Hilgenfeld R, Rao Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A. 2003, 100, 13190-5.


  11. Leung, D.; Schroder, K.; White, H.; Fang, N.-X.; Stoermer, M. J.; Abbenante, G.; Martin, J. L.; Young, P.; Fairlie, D. P. Activity Of Recombinant Dengue 2 Virus NS3 Protease In The Presence Of NS2B Cofactor, Small Peptide Substrates, And Inhibitors, J. Biol. Chem. 2001, 276, 45762-45771


  12. (a) Coombs, G. H.; Goldberg, D. E.; Klemba, M.; Berry, C.; Kay, J. et al. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 2001, 17, 532-537.

    (b) Silva, A. M.; Lee, A. Y.; Gulnik, S. V.; Maier, P.; Collins, J.; Bhat, T. N.; Collins, P. J.; Cachau, R. E.; Luker, K. E.; Gluzman, I. Y.; Francis, S. E.; Oksman, A.; Goldberg, D. E.; Erickson, J. W. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. U S A 1996, 93, 10034-9.

    (c) Rosenthal, P. J.; Sijwali, P. S.; Singh, A.; Shenai, B. R. Cysteine proteases of malaria parasites: Targets for chemotherapy. Current Pharmaceutical Design 2002, 8, 1659-1672.


  13. (a) Brindley, P. J.; Kalinna, B. H.; Dalton, J. P.; Day, S. R.; Wong, J. W.; Smythe, M. L.; McManus, D. P. Proteolytic degradation of host hemoglobin by schistosomes. Mol. Biochem. Parasitol. 1997, 89, 1-9.

    (b) Lecaille, F.; Kaleta, J.; Bromme, D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002, 102, 4459-4488.


  14. Blaxter M. Genes and genomes of Necator americanus and related hookworms. Int J Parasitol. 2000, 30, 347-55. 


  15. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., Huber, R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995, 268, 533.


  16. Goldberg A. L. Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426, 895-9.


  17. Chen, W. T.; Kelly, T.; Ghersi, G. DPPIV, seprase, and related serine peptidases in multiple cellular functions. Curr Top Dev Biol 2003, 54, 207-232.


  18. (a) Levi-Schaffer, F.; Piliponsky, A. M. Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol 2003, 24, 158-161.

    (b) Tanaka, R. D.; Clark, J. M.; Warne, R. L.; Abraham, W. M.; Moore, W. R. Mast cell tryptase: a new target for therapeutic intervention in asthma. Int. Arch. Allergy Immunol. 1995, 107, 408-9.


  19. (a) Trejo, J. Protease-activated receptors: new concepts in regulation of G protein-coupled receptor signaling and trafficking. J Pharmacol Exp Ther 2003, 307, 437-442.

    (b) Macfarlane, S. R.; Seatter, J.; Kanke, T.; Hunter, G. D.; Plevin, R. Protease activated receptors Pharm. Rev. 2001, 53, 245-282.


  20. Crawford ED, Epidemiology of prostate cancer. Urology 2003, 62, (6 Suppl 1), 3-12. 


  21. (a) Denault, J. B.; Salvesen, G. S. Caspases: keys in the ignition of cell death. Chem Rev 2002, 102, 4489-4500.

    (b) Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene 2003, 22, 8543-8567.